organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Umporn Athikomrattanakul,^a Chamras Promptmas,^a Martin Katterle^b and Uwe Schilde^c*

^aDepartment of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Thailand, ^bUniversität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht Strasse 24–25, D-14476 Golm, Germany, and ^cUni-Universität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht Strasse 24– 25, D-14476 Golm, Germany

Correspondence e-mail: us@chem.uni-potsdam.de

Key indicators

Single-crystal X-ray study T = 210 KMean $\sigma(\text{N}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.030 wR factor = 0.063 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

An orthorhombic polymorph of melaminium chloride hemihydrate

Crystals of an orthorhombic polymorph of 2,4,6-triamino-1,3,5-triazin-1-ium chloride hemihydrate, $C_3H_7N_6^+ \cdot Cl^- - 0.5H_2O$, were obtained by cocrystallization experiments under aqueous acidic conditions (HCl, pH = 2). In the crystal structure, the melaminium ions, chloride anions and water molecules are linked *via* hydrogen bonds. All H atoms of the melaminium cation are involved in hydrogen bonds. The chloride anions and the water molecules lie on mirror planes. In the *c* direction, the melaminium ions are stacked by $\pi - \pi$ interactions.

Comment

The title compound, (I), was obtained during cocrystallization studies of guanidinium chloride in H_2O/HCl (pH=2).

The formation of this substance was already described (Hughes, 1941). No structural information is given because only poor diffraction signals could be obtained. However, the needle-like crystals were found to be orthorhombic with a = 16.75 Å, b = 12.29 Å, c = 6.93 Å, space group *Cmcm*, *Cmc*2₁ or *C*2*cm* (Hughes, 1941). The investigation was not pursued any further.

A monoclinic polymorph of melaminium chloride hemihydrate was reported (Janczak & Perpétuo, 2001c) with two half-melaminium ions in the asymmetric unit. The two residues do not differ significantly from one another.

The asymmetric unit of (I) consists of a melaminium ion, two half-chloride anions and half a water molecule (Fig. 1). The Cl anions and the water molecule lie on a mirror plane.

The C-N-C angle at the protonated N atom is greater than the other two C-N-C angles (Table 1). These differences were also reported for the monoclinic polymorph (Janczak & Perpétuo, 2001c) and anhydrous melaminium chloride (Jing *et al.*, 2003), as well as for other singly protonated melaminium salts [bromide (Scoponi *et al.*, 1992), phthalate (Janczak & Perpétuo, 2001*a*), terephthalate (Zhang *et al.*, 2004)] and for multiply protonated melaminium salts [diperchlorate (Martin & Pinkerton, 1995) 4-hydroxybenzenesulfonate (Janczak & Perpétuo, 2001*b*), trichloride, Received 21 March 2007 Accepted 27 March 2007

1317 independent reflections

 $R_{\rm int} = 0.056$

1186 reflections with $I > 2\sigma(I)$

Figure 1

The asymmetric unit of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2

Packing diagram of the title compound with a view down the *a* axis. Hydrogen bonds are shown as dashed lines.

cocrystallized with cyanuric acid (Wang et al., 1990)]. Zhang & Chen (2005) reported an extensive hydrogen bonding system in melaminium salts with aromatic carboxylates.

The crystal structure is stabilized by hydrogen bonds and π - π stacking interactions. The melaminium ions are linked by $N-H\cdots N$ hydrogen bonds, forming chains along b (Fig. 2). The chains are interconnected by $N-H\cdots Cl$ and $N-H\cdots O$ hydrogen bonds. The Cl and O acceptor atoms are located in planes at x = 0 and $x = \frac{1}{2}$. In addition, the melaminium residues are stacked in the c direction by $\pi - \pi$ interactions with a distance of 3.49 Å between the melaminium cations, which is typical for $\pi - \pi$ stacking between aromatic ring systems

. Cl2

(symmetry code: x, -y + 1, $z + \frac{1}{2}$). Details of the hydrogenbond network are listed in Table 2.

Experimental

Guanidine hydrochloride (2.87 g, 30 mmol) and sodium methoxide (1.62 g, 30 mmol) were added to dried methanol (20 ml). The mixture was refluxed continually at 415 K until the solution became yellowbrown. The mixture was stored for a week at 277 K under acidic conditions (H₂O/HCl pH=2). A yellow crude precipitate was formed and recrystallized from methanol to afford colourless prismatic crystals suitable for X-ray analysis.

Crystal data

$C_{3}H_{7}N_{6}^{+}\cdot Cl^{-}\cdot 0.5H_{2}O$	$V = 1446.6 (5) \text{ Å}^3$
$M_r = 171.60$	Z = 8
Orthorhombic, Cmc2 ₁	Mo $K\alpha$ radiation
a = 16.827 (3) Å	$\mu = 0.47 \text{ mm}^{-1}$
b = 12.300 (2) Å	T = 210 (2) K
c = 6.9898 (14) Å	$0.20 \times 0.18 \times 0.15~\text{mm}$

Data collection

Stoe IPDS-II diffractometer Absorption correction: none 8913 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$vR(F^2) = 0.063$	independent and constrained
S = 1.03	refinement
.317 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
.05 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
restraint	Absolute structure: Flack (1983),
	with 595 Friedel pairs
	Flack parameter: 0.11 (8)

able 1		
Salaatad	hand	0.00

Selected bond angles (°).	
-------------------------	----	--

N2-C1-N6	125.59 (19)	C2-N2-C1	116.1 (2)
N2-C2-N4	121.0 (2)	C2-N4-C3	119.7 (2)
N6-C3-N4	121.4 (2)	C3-N6-C1	116.0 (2)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H12 \cdot \cdot \cdot Cl2^i$	0.86	2.44	3.281 (2)	167
$N1 - H11 \cdot \cdot \cdot O1^{ii}$	0.86	2.23	3.044 (3)	157
N3-H32···Cl1 ⁱⁱⁱ	0.86	2.48	3.256 (2)	150
$N3-H31\cdots N6^{iv}$	0.86	2.18	3.038 (3)	178
$N4-H4\cdots Cl1^{iii}$	0.86	2.47	3.246 (2)	151
N4-H4···Cl1	0.86	3.02	3.350 (2)	105
$N5 - H52 \cdot \cdot \cdot Cl2$	0.86	2.48	3.259 (2)	152
$N5-H51\cdots N2^{v}$	0.86	2.12	2.974 (3)	175
$O1-H1\cdots Cl2^{vi}$	0.89 (5)	2.41 (5)	3.300 (4)	176 (4)
$O1-H2\cdots Cl1$	0.81 (6)	2.61 (5)	3.321 (3)	147 (5)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $-x, -y + 1, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, z;$ (v) $-x + \frac{1}{2}, y - \frac{1}{2}, z;$ (vi) x, y, z + 1.

All H atoms were located in a difference Fourier map. Those bonded to N were refined using a riding model with with $U_{iso}(H) =$ $1.2U_{eq}(N)$ and N-H = 0.86 Å. The coordinates of the water H atoms were refined, but their $U_{iso}(H)$ values were set to $1.2U_{eq}(O)$.

organic papers

Data collection: X-AREA (Stoe & Cie, 2004); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

UA and CP thank RGJ (PHD/0090/2546) from the Thailand Fund for financial support.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876–881.

- Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737-1752.
- Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 123-125.
- Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 873-875.
- Janczak, J. & Perpétuo, G. J. (2001c). Acta Cryst. C57, 1120-1122.
- Jing, H., Ströbele, M., Weisser, M. & Meyer, H.-J. (2003). Z. Anorg. Allg. Chem. 629, 368–370.
- Martin, A. & Pinkerton, A. A. (1995). Acta Cryst. C51, 2174-2177.
- Scoponi, M., Polo, E., Pradella, F., Bertolasi, V., Carassiti, V. & Goberti, P. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 1127–1132.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appli. Cryst. 36, 7-13.
- Stoe & Cie (2004). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
- Wang, Y., Wei, B. & Wang, Q. (1990). J. Crystallogr. Spectrosc. Res. 20, 79-84.
- Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, 0462–0463.
- Zhang, X.-L. & Chen, X.-M. (2005). Cryst. Growth Des. pp. 617-622.